Abstract
Capparis spinosa (caper), a winter-deciduous perennial shrub, is a consistent floristic element of Mediterranean ecosystems, growing from May to October, i.e. entirely during the prolonged summer drought. The internal architecture of young and fully expanded leaves was studied, along with certain physiological characteristics. Capparis spinosa possesses thick, amphistomatic and homobaric leaves with a multilayered mesophyll. The latter possesses an increased number of photosynthesizing cells per unit leaf surface, a large surface area of mesophyll cells facing intercellular spaces (Smes) and a low percentage of intercellular space per tissue volume. Smes and chlorophyll content attain their maximum values synchronously, slightly before full leaf expansion. Nitrogen investment is also completed before full leaf expansion. The structural features, in combination with the water status, could contribute to enhanced rates of transpiration and photosynthesis under field water shortage conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.