Abstract
Increasing photosynthetic photon flux density (PPFD) received during development from 5.5 to 31.2 mol m‐2 d‐1 resulted in greater leaf and mesophyll cell surface areas in cotton (Gossypium hirsutum L.). The relationships between the amounts of these surface areas and potential CO2 assimilation by these leaves were evaluated. Leaf area (epidermal surface area of one side of a leaf), mesophyll cell surface area, and net rate of CO2 uptake (Pn) were measured from the time leaves first unfolded until P., was substantially reduced. At the higher PPFD, leaf and mesophyll surface areas increased more rapidly during expansion, and Pn per unit leaf area was greater than at the lower PPFD. Although leaves at the higher PPFD reached the maximum P., per unit mesophyll cell surface area 4 to 5 days earlier than leaves at the lower PPFD, the maxima for these P., were similar. Leaves grown at the higher PPFD had the potential to assimilate 2.2, 3.5, or 5.8 times the amount of CO2 as leaves from the lower PPFD when P., was expressed per unit mesophyll surface, per unit leaf surface, or per whole leaf, respectively. Greater and earlier development of both P., and mesophyll cell surface area at higher PPFD apparently had a compounding effect on the potential for carbon assimilation by a leaf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.