Abstract

Resveratrol (RVT) is one of the potent anticancer phytochemicals which has shown promising potential for breast cancer therapy. However, its short half-life and low bioavailability is a major hurdle in its effective use. In this study, we have developed nanostructured lipid carriers (NLCs) of RVT to enable localized delivery of the drug to the breast tissues using microneedle arrays to improve effectiveness. The NLCs were optimized using the Design of Experiments approach and characterized for their particle size, polydispersity index, zeta potential and entrapment efficiency. The RVT-NLCs delivered using microneedle array 1200 showed a higher permeation of RVT across the skin with lower skin retention compared to pure RVT. Further, RVT-NLCs showed higher anticancer activity on MDA-MB-231 breast cancer cell lines and enhanced internalization compared to pure RVT. Moreover, the RVT-NLCs were found to inhibit the migration of MDA-MB-231 breast cancer cell lines. Preclinical studies in rats showed that RVT-NLCs delivered via microneedles demonstrated a remarkable increase in the Cmax, Tmax and AUC0-inf, and a higher localization in breast tissue compared to pure RVT administered orally. These results suggests that the RVT-NLCs administered by microneedle array system is an effective strategy for the local delivery of RVT for breast cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.