Abstract

A jet injector platform technology that provides improved performance over existing jet injectors through the use of a controllable linear Lorentz-force actuator and software-based control system has been developed. Injectors designed on this platform are capable of delivering injections using arbitrary pressure pulse shaping. Pulse shaping has been shown to allow a wide degree of control over the depth to which the injection is delivered. A software-based injector control system improves repeatability and allows for automatic reloading of the injector, a task that would be difficult to implement using existing jet injector platforms. A design for a prototype autoloading controllable jet injector (cJI) based on this platform is detailed. The injection capability of this cJI was evaluated both in-vitro and in-vivo using a tissue analog, excised porcine tissue, and ovine tissue. An analysis of the cJI’s performance indicates that this design is capable of delivering a controllable volume of fluid to a controllable depth based entirely on the parameter’s input into the control software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.