Abstract

The saltiness enhancement effect can be produced by adding specific substances to dietary salt (sodium chloride). This effect has been used in salt-reduced food to help people forge healthy eating habits. Therefore, it is necessary to objectively evaluate the saltiness of food based on this effect. In a previous study, sensor electrodes based on lipid/polymer membrane with Na+ ionophore have been proposed to quantify the saltiness enhanced by branched-chain amino acids (BCAAs), citric acid, and tartaric acid. In this study, we developed a new saltiness sensor with the lipid/polymer membrane to quantify the saltiness enhancement effect of quinine by replacing a lipid that caused an unexpected initial drop in the previous study with another new lipid. As a result, the concentrations of lipid and ionophore were optimized to produce an expected response. Logarithmic responses have been found on both NaCl samples and quinine-added NaCl samples. The findings indicate the usage of lipid/polymer membranes on novel taste sensors to evaluate the saltiness enhancement effect accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.