Abstract

Plasma density measurements are key to a wide variety of high-energy-density (HED) and laboratory astrophysics experiments. We present a creative application of photonic Doppler velocimetry (PDV) from which time- and spatially resolved electron density measurements can be made. PDV has been implemented for the first time in close proximity, ∼6 cm, to the high-intensity radiation flux produced by a z-pinch dynamic hohlraum on the Z-machine. Multiple PDV probes were incorporated into the photoionized gas cell platform. Two probes, spaced 4 mm apart, were used to assess plasma density and uniformity in the central region of the gas cell during the formation of the plasma. Electron density time histories with subnanosecond resolution were extracted from PDV measurements taken from the gas cells fielded with neon at 15 Torr. As well, a null shot with no gas fill in the cell was fielded. A major achievement was the low noise high-quality measurements made in the harsh environment produced by the mega-joules of x-ray energy emitted at the collapse of the z-pinch implosion. To evaluate time dependent radiation induced effects in the fiber optic system, two PDV noise probes were included on either side of the gas cell. The success of this alternative use of PDV demonstrates that it is a reliable, precise, and affordable new electron density diagnostic for radiation driven experiments and more generally HED experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call