Abstract
The increasing prevalence of electronic health records (EHRs) in healthcare systems globally has underscored the importance of data quality for clinical decision-making and research, particularly in obstetrics. High-quality data is vital for an accurate representation of patient populations and to avoid erroneous healthcare decisions. However, existing studies have highlighted significant challenges in EHR data quality, necessitating innovative tools and methodologies for effective data quality assessment and improvement. This article addresses the critical need for data quality evaluation in obstetrics by developing a novel tool. The tool utilizes Health Level 7 (HL7) Fast Healthcare Interoperable Resources (FHIR) standards in conjunction with Bayesian Networks and expert rules, offering a novel approach to assessing data quality in real-world obstetrics data. A harmonized framework focusing on completeness, plausibility, and conformance underpins our methodology. We employed Bayesian networks for advanced probabilistic modeling, integrated outlier detection methods, and a rule-based system grounded in domain-specific knowledge. The development and validation of the tool were based on obstetrics data from 9 Portuguese hospitals, spanning the years 2019-2020. The developed tool demonstrated strong potential for identifying data quality issues in obstetrics EHRs. Bayesian networks used in the tool showed high performance for various features with area under the receiver operating characteristic curve (AUROC) between 75% and 97%. The tool's infrastructure and interoperable format as a FHIR Application Programming Interface (API) enables a possible deployment of a real-time data quality assessment in obstetrics settings. Our initial assessments show promised, even when compared with physicians' assessment of real records, the tool can reach AUROC of 88%, depending on the threshold defined. Our results also show that obstetrics clinical records are difficult to assess in terms of quality and assessments like ours could benefit from more categorical approaches of ranking between bad and good quality. This study contributes significantly to the field of EHR data quality assessment, with a specific focus on obstetrics. The combination of HL7-FHIR interoperability, machine learning techniques, and expert knowledge presents a robust, adaptable solution to the challenges of healthcare data quality. Future research should explore tailored data quality evaluations for different healthcare contexts, as well as further validation of the tool capabilities, enhancing the tool's utility across diverse medical domains.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.