Abstract
As artificial intelligence evolves, integrating speech processing into home healthcare (HHC) workflows is increasingly feasible. Audio-recorded communications enhance risk identification models, with automatic speech recognition (ASR) systems as a key component. This study evaluates the transcription accuracy and equity of 4 ASR systems-Amazon Web Services (AWS) General, AWS Medical, Whisper, and Wave2Vec-in transcribing patient-nurse communication in US HHC, focusing on their ability in accurate transcription of speech from Black and White English-speaking patients. We analyzed audio recordings of patient-nurse encounters from 35 patients (16 Black and 19 White) in a New York City-based HHC service. Overall, 860 utterances were available for study, including 475 drawn from Black patients and 385 from White patients. Automatic speech recognition performance was measured using word error rate (WER), benchmarked against a manual gold standard. Disparities were assessed by comparing ASR performance across racial groups using the linguistic inquiry and word count (LIWC) tool, focusing on 10 linguistic dimensions, as well as specific speech elements including repetition, filler words, and proper nouns (medical and nonmedical terms). The average age of participants was 67.8 years (SD = 14.4). Communication lasted an average of 15 minutes (range: 11-21 minutes) with a median of 1186 words per patient. Of 860 total utterances, 475 were from Black patients and 385 from White patients. Amazon Web Services General had the highest accuracy, with a median WER of 39%. However, all systems showed reduced accuracy for Black patients, with significant discrepancies in LIWC dimensions such as "Affect," "Social," and "Drives." Amazon Web Services Medical performed best for medical terms, though all systems have difficulties with filler words, repetition, and nonmedical terms, with AWS General showing the lowest error rates at 65%, 64%, and 53%, respectively. While AWS systems demonstrated superior accuracy, significant disparities by race highlight the need for more diverse training datasets and improved dialect sensitivity. Addressing these disparities is critical for ensuring equitable ASR performance in HHC settings and enhancing risk prediction models through audio-recorded communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.