Abstract
A GIS based pesticide risk indicator that integrates exposure variables (i.e. pesticide application, geographic, physicochemical and crop data) and toxicity endpoints (using species sensitivity distributions) was developed to estimate the Predicted Relative Exposure (PREX) and Predicted Relative Risk (PRRI) of applied pesticides to aquatic ecosystem health in the Lourens River catchment, Western Cape, South Africa. Samples were collected weekly at five sites from the beginning of the spraying season (October) till the beginning of the rainy season (April) and were semi quantitatively analysed for relevant pesticides applied according to the local farmers spraying programme. Monitoring data indicate that physicochemical data obtained from international databases are reliable indicators of pesticide behaviour in the Western Cape of South Africa. Sensitivity analysis identified KOC as the most important parameter influencing predictions of pesticide loading derived from runoff. A comparison to monitoring data showed that the PREX successfully identified hotspot sites, gave a reasonable estimation of the relative contamination potential of different pesticides at a site and identified important routes of exposure (i.e. runoff or spray drift) of different pesticides at different sites. All pesticides detected during a monitored runoff event, were indicated as being more associated with runoff than spray drift by the PREX. The PRRI identified azinphos-methyl and chlorpyrifos as high risk pesticides towards the aquatic ecosystem. These results contribute to providing increased confidence in the use of risk indicator applications and, in particular, could lead to improved utilisation of limited resources for monitoring and management in resource constrained countries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have