Abstract
Various prognostic indexes have been proposed to improve physicians' ability to predict survival time in advanced cancer patients, admitted to palliative care (PC) with a survival probably to a few weeks of life, but no optimal score has been identified. The study aims therefore to develop and externally validate a new multivariable predictive model in this setting. We developed a model to predict short-term overall survival in cancer patients on the basis of clinical factors collected at PC admission. The model was developedon 1020 cancer patients prospectively enrolled to home palliative care at VIDAS Milan, Italy, between May 2018 and February 2020 and followed-up to June 2020, and validated in two separate samples of 544 home care and 247 hospice patients. Among68 clinical factors considered, five predictors were included in the predictive model, i.e., rattle, heart rate, anorexia, liver failure, and the Karnofsky performance status. Patient's survival probability at5, 15, 30 and 45 days was estimated. The predictive model showed a good calibration and moderate discrimination (area under the receiver operating characteristic curve between 0.72 and 0.79) in the home care validation set, but model calibration was suboptimal in hospice patients. The new multivariable predictive model for palliative cancer patients' survival (PACS model) includes clinical parameters routinely at patient's admission to PC and can be easily used to facilitate immediate and appropriate short-termclinical decisions for PC cancer patients in the home setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.