Abstract

A new data analysis methodology for X-ray absorption near-edge spectroscopy (XANES) is introduced and tested using several examples. The methodology has been implemented within the context of a new Matlab-based program discussed in a companion related article [Delgado-Jaime et al. (2010), J. Synchrotron Rad. 17, 132-137]. The approach makes use of a Monte Carlo search method to seek appropriate starting points for a fit model, allowing for the generation of a large number of independent fits with minimal user-induced bias. The applicability of this methodology is tested using various data sets on the Cl K-edge XAS data for tetragonal CuCl(4)(2-), a common reference compound used for calibration and covalency estimation in M-Cl bonds. A new background model function that effectively blends together background profiles with spectral features is an important component of the discussed methodology. The development of a robust evaluation function to fit multiple-edge data is discussed and the implications regarding standard approaches to data analysis are discussed and explored within these examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.