Abstract

Relativistic multireference ab initio wave function calculations within the restricted active space (RAS) framework were performed to calculate metal and ligand X-ray absorption (XAS) near-edge spectroscopy (XANES) intensities for the metal M4,5 edges of [PuO2(H2O)5]2+, [AnVIO2]2+ (An = U, Np, Pu), and [AmCl6]3- and the Cl K edge of the Am complex. The extent of An(5f)-ligand bonding was determined via natural localized molecular orbital analyses of the relevant spin-orbit coupled multireference states. The calculated spectra are in good agreement with experiments and allow a detailed assignment of the observed spectral features. The XANES M4,5-edge spectra are representative of the actinide orbital covalency in the probed core-excited states, which may be different from the ground-state covalency. An assignment of ground-state An orbital covalency based on XAS spectra should therefore be made with caution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call