Abstract

A prototype of the Toroidal Field (TF) Secondary Quench Detection system (SQD) was developed and implemented with the Korea Superconducting Tokamak Advanced Research (KSTAR) device to carry out the design verification of the SQD. The SQD can detect a quench based on the change of absolute pressures and mass flow rates of helium in the cooling lines of the TF coils. If the primary quench detection system of the TF coils cannot detect quench or the fast discharge of the TF coils cannot be carried out as planned, SQD should work to prevent the TF coils and the peripheral structures from severe damages. In addition, SQD should operate in the reliable and stable condition against disturbances caused by Poloidal Field (PF) coil discharge, plasma perturbation, and any faults of subsystems of the KSTAR device. The 2 out of 3 (2003) voting configuration was applied to SQD to enhance reliability and stability of quench detection. The prototype SQD consists of absolute and differential pressure transducers, signal interfaces, logic solvers, and interlock systems. All the transducers were selected from metallic types with no electronic circuit in order to reduce the failure rates caused by strong electromagnetic field and radiation around the Tokamak. The transducers were installed in manifolds of the helium inlet lines of the KSTAR TF coils. Their signals were amplified and compared to the reference voltage for quench decision in the signal interface unit. The quench signal generated by the signal interface unit was transmitted to the 2003 voting modules of the logic solvers. The design requirements of SQD were verified through testing the prototype SQD in the 2014 KSTAR campaign.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call