Abstract
Optical pyrometers provide many advantages over intrusive measuring techniques in determining the spatial and time varying temperature distribution of fast rotating components in gas turbines. This paper describes the development and evaluation of a versatile high-resolution pyrometer system and its application to radial turbine rotor temperature mapping as has been done in a R&D project at the Technical University Berlin under funding from Siemens Power Generation (KWU). The development goal was a pyrometer system with a temporal resolution of 1 μs, a minimum field of view of 1 mm, and a measurement range from 600 to 1500°C. A prototype of the pyrometer system has been built and tested at the small gas turbine test facility of the Technical University Berlin. The system yielded excellent results with respect to measurement uncertainty, resolution, and reliability. Finally, measurement results obtained with the new system on a radial turbine rotor and on a heavy duty industrial gas turbine are compared with measurements conducted with a commercially available turbine pyrometer system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.