Abstract

The most effective technologies currently available for controlling NOx emissions from heavy duty industrial gas turbines are either diluent injection in the combustor reaction zone, or dry low NOx (DLN) combustion, coupled with selective catalytic reduction (SCR) De-NOx in the gas turbine exhaust. A competing technology with the potential for achieving comparable emissions levels at substantially lower capital investment and operating cost is catalytic combustion of lean premixed fuel and air within the gas turbine. A preliminary design of a catalytic combustion system using natural gas fuel has been prepared for the GE Model MS9001E gas turbine. A full scale test combustor has been constructed for a full pressure development test based upon this design work and was operated at the GE Power Generation Engineering Laboratory in Schenectady, New York. Discussion of the catalytic combustor design, the catalytic reactor design and laboratory development test results is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.