Abstract
The rapid increases in the quantity of data being gathered regarding technological systems such as railways can promote improvements in their design and operation. Combining information from different datasets allows more in-depth analysis, such as using train location data to enhance the analysis of speed profiles and energy consumption. Positioning systems such as GPS are frequently used to obtain this information, but are not necessarily always available, such as in underground metro systems. The focus of this paper is therefore the development of algorithms to derive train location information from measured speed profile data and network topology. Two different algorithms were developed to extract individual station-to-station journeys from an example consisting of a dataset of speed profiles and energy consumption from an urban rail system, and four classification algorithms were developed to identify the station pairs associated with each journey. It was found that the best-performing approach for this task was to compare the cumulative distance of a group of several consecutive journeys against a database of station-to-station distances to find the best match. This was more resilient than constructing sequences of consecutive journeys from possible matches in a database of station-to-station distances and orders of magnitude faster than heuristic algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.