Abstract

We demonstrate an innovative beam stabilization concept consisting of complementary metal-oxide semiconductor cameras and piezo actuators for a six-axis articulated ultrashort pulsed laser robot system. The beam stabilization system is fixed on robot axes 4 and 5. Moving robot axis 5 in an angular range between 0° and 90°, the laser beam position coupled to the actual robot position is monitored by two cameras integrated on robot axis 5 and used for laser beam characterization and model generation. A mathematical description and models generated with machine learning methods, namely, linear regression and neural network, are compared for predicting the beam position drift as a function of robot axis motion, where the neural network model shows a low prediction tolerance of about 7 pixels. In addition, a stand-alone time-triggered beam correction algorithm is developed and implemented on the system, which shows an excellent correction performance for large beam position drifts (below 500 pixels).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.