Abstract

In the laser-assisted fiber cleaving process, an ultrashort, high-energy laser is used to introduce a flaw on the optical fiber surface, and then the fiber is cleaved under a tension or bending load. The quality of the cleaved end depends on the crack propagation from the artificial flaw. To understand the cleaving process and the effects of flaw parameters on cleaving quality, crack propagation is modeled by considering a pre-existing surface flaw using a graph-based finite element method (GraFEA). GraFEA is based on the nonlocal multiple cracking simulation framework for brittle and quasi-brittle materials. First, a three-point bending test is conducted to calibrate material parameters in GraFEA for commercial fused silica glass. Subsequently, the model is validated by four-point bending and ring-on-ring tests. After validation, the fiber cleaving process is investigated by parametric simulations in which different loading types (bending or tension) are considered. Finally, a beneficial process window is obtained and recommended for improved cleaving quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.