Abstract

Stable rheological properties of ceramic ink are a key requirement for inkjet printing (IJP), which should be satisfied in terms of the Reynolds and Weber numbers. In this paper, the reverse microemulsion was introduced for the synthesis of monodispersed nanosized ceramic powders, and the average size was less than 100 nm. A comparison of two different dispersants, i.e., polyacrylic ammonium (PAANH4) and polyacrylic aid (PAA), revealed that the former exerted a good dispersion effect on the ceramic ink. The sedimentation ratio, zeta potential, surface tension, viscosity, and density of the inks were measured, and the Reynolds and Weber numbers, as well as Z value, were calculated. A stable, homogeneous, and high solid loading (20 wt%) ceramic ink could be achieved after aging for a period of 72 h. Finally, the ceramic inks showed the desired printable property in the inkjet printing process. Combining inkjet printing technology with a sintering process, Ni-Mn-O films have the potential to monitor temperature and humidity parameters for intelligent wearable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.