Abstract

Two flexible stimuli-responsive hydrogel films were elaborated as biomedical sensor application. The hydrogel systems were contained in glass moulds and synthesized using gamma radiation at a dose rate of 10.1 kGy h−1, and absorbed dose of 50 kGy. The poly(NIPAAm) with a low critical solution temperature (LCST) close to the human body temperature, was employed as the principal component for the responsive materials. The addition of dimethyl acrylamide (DMAAm) for hydrophilic effect, methyl methacrylate (MMA) for mechanical property, and ethoxyethyl methacrylate (EEM) for mechanical property, modified the thermo dynamic transition point, obtaining viable responsive films with LCST of 36 °C and 39 °C. The samples were characterized by DSC to analyse the LCST, FT-IR to characterize the functional groups of the resulting films, AFM to examine the surface morphology, and swelling measurement to support the flexibility. Responsive ‘intelligent’ films with thermo sensitivity, biocompatibility, resistance, and conformableness are important to the development of flexible polymers for the application of biological sensor, smart membranes, or flexible electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call