Abstract

Polo like kinase 2 (PLK2), a serine/threonine serum inducible kinase, has been proposed to be the major factor responsible for phosphorylating alpha-synuclein (α-syn) at Serine-129 (Ser-129) in Parkinson’s disease (PD). A suitable strategy to gain insights into PLK2’s biological effects might be to increase PLK2 intracellular levels with the aim of reproducing the slow progressive neuronal changes that occur in PD. The goal of this study was to develop and characterize a novel drug delivery system (DDS) for PLK2 cytosolic delivery using Total recirculating one machine system (TROMS), a technique capable of encapsulating fragile molecules while maintaining their native properties. A protocol for nanoparticle (NP) preparation using TROMS was set up. NPs showed a mean diameter of 257±15.61nm and zeta potential of −16±2mV, suitable for cell internalization. TEM and SEM images showed individual, spherical, dispersed NPs. The drug entrapment efficacy was 61.86±3.9%. PLK2-NPs were able to enter SH-SY5Y cells and phosphorylate α-syn at Ser-129, demonstrating that the enzyme retained its activity after the NP manufacturing process. This is the first study to develop a DDS for continuous intracellular delivery of PLK2. These promising results indicate that this novel nanotechnology approach could be used to elucidate the biological effects of PLK2 on dopaminergic neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.