Abstract

The emphasis on sustainability in materials related to the construction and transportation sectors has renewed interest in the usage of natural fibers. In this manuscript, a different perspective is taken in adopting oil palm fibers (OPF) to develop composite panels and understand their acoustic, mechanical, and water susceptibility (including warm water analysis) properties to provide an insight into the potential of these panels for further exploration. The binder for these composite panels is a water-based acrylic resin, and for reinforcement purposes, fly ash and other metal oxides are used. It is shown that the presence of fibers positively influences the acoustic absorption coefficient in the critical mid-frequency range of 1000–3000 Hz. Even the noise reduction coefficient values highlighting the octave band are higher by more than 50% in the presence of fibers as compared to traditional refractory boards. Quasistatic indentation and drop-weight tests have also highlighted the excellent performance of the composite panels developed in this work. Though the water immersion tests on composite panels and subsequent analysis showed relatively minor changes in their performance, the immersion of the panels in caustic warm water for 56 days has resulted in their severe degradation with a loss of more than 65% in flexural strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.