Abstract

The use of bone substitutes for recovery of lost function is a constant search within the medical field. So biomaterials have received a very large attention from the scientific community, including the materials the basis of calcium phosphate. Hydroxyapatite (HA) has been studied as apart from representing the natural constitution of the mass of bones and teeth in 30 to 70 %, has properties of bioactivity and osteoconductivity, encouraging and assisting the growth of bone tissue. In contrast, bacterial infections can arise after implantation causing the loss of functionality in the short and medium term. Several alternatives are being tested, usually associated with the use of conventional antibiotics incorporated into biomaterials. An alternative to antibiotics would be use such metals that possess antibacterial properties. Silver (Ag) is known as a bactericidal metal and so gained a prominent place among the studies as an important ally in the control of post-surgical infections. This work aimed to synthesize, characterize and evaluate the antimicrobial effect of the addition of silver ions into hydroxyapatite. The hydroxyapatites containing silver were obtained by the precipitation method in aqueous solution containing AgNO3 and by immersing the powder after the precipitation process in aqueous solutions containing AgNO3. At this stage of the work, were analyzed and characterized the crystalline phases and the ionic groups present in HA, HA precipitates with Ag and immersed in a solution of Ag. X-ray diffraction (XRD) spectra showed that regardless of the method used, precipitation (room temperature or 90°C) or by immersion, the metallic Ag was present in the structure of HA. Additionally, it was observed that the peaks indicated in the XRD pattern for HA corresponding to the diffraction pattern of plugs JPCDS 09-0432 (Joint Committee on Powder Diffraction Standards). No peaks related to the phases being observed β-TCP and CaO, respectively, indicating that the conditions adopted for obtaining HA Ag, only HA phase is present and that methods, precipitation and immersion are efficient to occur doping of HA with Ag

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call