Abstract
To achieve stable polymer electrolyte membranes (PEMs) with efficient ionic nano-channels, novel fully aromatic AB or ABA copolymers composed of poly(fluorenyl ether sulfone biphenyl)s (PFESBs) and poly(arylene ether sulfone)s (PAESs) were synthesized via polymerization and post-sulfonation methods, and were explored as fuel cell membranes. The structural analysis of synthesized copolymers and the corresponding membranes were ascertained by gel permeation chromatography (GPC), Fourier transform infrared (FTIR), and 1H nuclear magnetic resonance (NMR) techniques. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. High hydrophilic and hydrophobic nano-phase separation and obvious ionic aggregate block morphology was observed in both triblock and diblock copolymers in atomic force microscopy (AFM) phase images, which may be highly related to their proton transport ability. A sulfonated AB diblock copolymer membrane with an ion-exchange capacity (IEC) of 2.06 meq g−1 has a maximum proton conductivity of 184 mS cm−1, which is higher than that of a perfluorosulfonic acid membrane under the same measurement conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.