Abstract
Nanoliposomes (NLPs) have evolved as compelling carriers for loading bioactive compounds. To improve the phospholipid bilayer membrane stability, caffeine-loaded NLPs were coated with cationic amylose (CA) and CA–menthol inclusion complexes (CAMICs). The zeta potential results indicated an electrostatic attraction between CA and the negatively charged NLPs. Observations from dynamic light scattering, atomic force microscopy, and Fourier transform infrared spectroscopy demonstrated the efficient deposition of both CA and CAMICs onto the surface of NLPs without altering their spherical shape. Raman spectra and X-ray diffraction patterns indicated that both CA and CAMICs can decrease membrane fluidity and enhance lipid packing laterally. Additional assessment through thermogravimetric analysis revealed that the coating of NLPs, particularly with CAMICs, protected caffeine against thermal degradation. These coated NLPs show promise for formulation advancement, facilitating the simultaneous delivery of functional compounds.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have