Abstract
A new multi-strength level binder system was developed as a potential replacement of cement. It utilized alkaline solid wastes soda residue (SR) and calcium carbide slag (CS), to synergistically activate ground granulated blast-furnace slag (GGBS) and fly ash (FA). A comprehensive combination of experimental studies on compressive strength, setting time, fluidity, chloride-ion consolidation, and drying shrinkage with XRD, TG-DTG, FTIR and SEM-EDS examinations ensured a systematic evaluation of properties and evolution mechanism of the proposed binder. The results show that mixing CS can increase the early hydration rate and generate more C-S-H gel and Friedel’s salt, Hydrotalcite crystal products. As a result, the early and late strengths were significantly improved. The chloride-ion consolidation rate was increased, and the drying shrinkage was reduced. On the other hand, FA's low activity was used to adjust the strength level. Also the FA can reduce shrinkage, but it hindered the consolidation of chloride ions. The new binder system had a 28d strength of 17.5–43.2 MPa, with the initial and final setting times of 3.8–6.1 h and 6.4–10.2 h, respectively. At the water-to-binder ratio of 0.5, the mortar's fluidity was 146–181 mm, the drying shrinkage was 0.11%–0.29%, and the chloride ion consolidation rate exceeded 70%. This new binder system can be applied to concrete blocks, pavement bricks, slope protection concrete, and other unreinforced products. The results obtained are instrumental in mitigating the environmental pollution caused by industrial solid wastes and reducing binders' cost.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have