Abstract

Multicellular 3-dimensional (3D) in vitro models of normal human breast tissue to study cancer initiation are required. We present a model incorporating three of the major functional cell types of breast, detail the phenotype and document our breast cancer initiation studies. Myoepithelial cells and fibroblasts were isolated and immortalised from breast reduction mammoplasty samples. Tri-cultures containing non-tumorigenic luminal epithelial cells HB2, or HB2 overexpressing different HER proteins, together with myoepithelial cells and fibroblasts were established in collagen I. Phenotype was assessed morphologically and immunohistochemically and compared to normal breast tissue. When all three cell types were present, polarised epithelial structures with lumens and basement membrane production were observed, akin to normal human breast tissue. Overexpression of HER2 or HER2/3 caused a significant increase in size, while HER2 overexpression resulted in development of a DCIS-like phenotype. In summary, we have developed a 3D tri-cellular model of normal human breast, amenable to comparative analysis after genetic manipulation and with potential to dissect the mechanisms behind the early stages of breast cancer initiation.

Highlights

  • Researchers are beginning to appreciate the need for more complex multicellular three-dimensional (3D) laboratory models in order to study the processes associated with disease progression

  • We demonstrated that the model is representative of normal human breast by comparing the morphology and immunoprofile to ‘gold standard’ normal human breast tissue sections, and determined that the model was amenable to cancer initiation studies through HER overexpression in luminal epithelial cells

  • Tri-culture of HB2, Myo1089 and fibroblasts, resulted in the arrangement of Myo1089 myoepithelial cells around the outer edges of spherical lumen containing HB2 epithelial cells with fibroblasts loosely distributed throughout the collagen gel (Figure 1e) akin to normal breast acini (Figure 1f)

Read more

Summary

Introduction

Researchers are beginning to appreciate the need for more complex multicellular three-dimensional (3D) laboratory models in order to study the processes associated with disease progression. In recent years there has been a shift towards developing 3D in vitro models that better represent breast tissues. These typically involve culturing breast epithelial cells alone or with fibroblasts [1,2,3] in 3D in the presence of extracellular matrix (ECM) such as MatrigelTM or collagen I. By culturing cells with specific ECM constituents, cell-cell and cell-ECM interactions can be represented in the laboratory [5] This has led to a better understanding of how different breast cell types interact with each other and the surrounding ECM as well as identification of key intercellular signalling proteins involved in maintaining luminal cell polarity such as integrins [6] and cadherins [7]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.