Abstract

This study presents the design and development of a high-resolution convex grating dispersion hyperspectral imaging system tailored for unmanned aerial vehicle (UAV) remote sensing applications. The system operates within a spectral range of 400 to 1000 nm, encompassing over 150 channels, and achieves an average spectral resolution of less than 4 nm. It features a field of view of 30°, a focal length of 20 mm, a compact volume of only 200 mm × 167 mm × 78 mm, and a total weight of less than 1.5 kg. Based on the design specifications, the system was meticulously adjusted, calibrated, and tested. Additionally, custom software for the hyperspectral system was independently developed to facilitate functions such as control parameter adjustments, real-time display, and data preprocessing of the hyperspectral camera. Subsequently, the prototype was integrated onto a drone for remote sensing observations of Spartina alterniflora at Yangkou Beach in Shouguang City, Shandong Province. Various algorithms were employed for data classification and comparison, with support vector machine (SVM) and neural network algorithms demonstrating superior classification accuracy. The experimental results indicate that the UAV-based hyperspectral imaging system exhibits high imaging quality, minimal distortion, excellent resolution, an expansive camera field of view, a broad detection range, high experimental efficiency, and remarkable capabilities for remote sensing detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.