Abstract
Plastics have long been an environmental contaminant of concern as both large-scale plastic debris and as micro- and nano-plastics with demonstrated wide-scale ubiquity. Research in the past decade has focused on the potential toxicological risks posed by microplastics, as well as their unique fate and transport brought on by their colloidal nature. These efforts have been slowed by the lack of analytical techniques with sufficient sensitivity and selectivity to adequately detect and characterize these contaminants in environmental and biological matrices. To improve analytical analyses, microplastic tracers are developed with recognizable isotopic, metallic, or fluorescent signatures capable of being identified amidst a complex background. Here we describe the synthesis, characterization, and application of a novel synthetic copolymer nanoplastic based on polystyrene (PS) and poly(2-vinylpyridine) (P2VP) intercalated with gold, platinum or palladium nanoparticles that can be capped with different polymeric shells meant to mimic the intended microplastic. In this work, particles with PS and polymethylmethacrylate (PMMA) shells are used to examine the behavior of microplastic particles in estuarine sediment and coastal waters. The micro- and nanoplastic tracers, with sizes between 300 and 500 nm in diameter, were characterized using multiple physical, chemical, and colloidal analysis techniques. The metallic signatures of the tracers allow for quantification by both bulk and single-particle inductively-coupled plasma mass spectrometry (ICP-MS and spICP-MS, respectively). As a demonstration of environmental applicability, the tracers were equilibrated with sediment collected from Bellingham Bay, WA, United States to determine the degree to which microplastics bind and sink in an estuary based of grain size and organic carbon parameters. In these experiments, between 80 and 95% of particles were found to associate with the sediment, demonstrative of estuaries being a major anticipated sink for these contaminants. These materials show considerable promise in their versatility, potential for multiplexing, and utility in studying micro- and nano-plastic transport in real-world environments.
Highlights
Plastic pollution is a pervasive ecological concern brought on by the ubiquity of plastics and their recalcitrance to environmental degradation (Claessens et al, 2011; Law and Thompson, 2014; Rochman, 2018)
This determination was made at three different dilution factors, which were all in agreement (Supplementary Figure S5)
Polymer Synthesis Enables Mono-Disperse Nanoplastic Suspensions In this work, we successfully demonstrate that PS and PMMA can be added as a shell to the PS-co-P2VP core particle by seeded emulsion polymerization of methylmethacrylate or styrene
Summary
Plastic pollution is a pervasive ecological concern brought on by the ubiquity of plastics and their recalcitrance to environmental degradation (Claessens et al, 2011; Law and Thompson, 2014; Rochman, 2018). Understanding the role MPs may play as vectors for POPs and hydrophobic organic contaminants (HOCs) is a particular challenging prospect as it requires an understanding the relative rates of partitioning between the polymer, the organic contaminant, and the biotic ligand (i.e. tissue). It should be noted, as these studies continue to be refined, evidence increasingly suggests that MP vector transport might not be a significant contributor to their risk (Koelmans et al, 2016; Koelmans et al, 2021)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.