Abstract

Molecularly imprinted quantum dots (MIP-QDs) were successfully synthesized via reversed-phase microemulsion and used as the specific recognition element and signal probe of a fluorescence sensor or test strip to achieve the highly sensitive detection of propanil. The physical–chemical characteristics and excellent selectivity of MIP-QDs were elucidated. Under optimized parameters, the MIP-QDs had good linearity at the propanil concentration range of 1.0 μg/L to 20.0 × 103 μg/L by fluorescence quenching. The developed MIP-QD-based fluorescence sensor showed good recoveries ranging from 87.2 % to 112.2 %, and the relative standard deviation was below 6.0 % for the fish and seawater samples. In addition, the limits of detection (LODs) for fish and seawater were 0.42 μg/kg and 0.38 μg/L, respectively. The fluorescence test strip developed on the basis of the MIP-QDs also displayed satisfactory recoveries of 90.1 %–111.1 %, and the LOD for propanil in the seawater sample was 0.6 μg/L. The proposed fluorescence sensor and test strip were successfully used in propanil determination in environment and aquatic products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.