Abstract

As one of the most concerned issues in modern society, air quality has received extensive attentions from the public and the government, which promotes the continuous development and progress of air quality forecasting technology. In this study, an automated air quality forecasting system based on machine learning has been developed and applied for daily forecasts of six common pollutants (PM2.5, PM10, SO2, NO2, O3, and CO) and pollution levels, which can automatically find the best “Model + Hyperparameters” without human intervention. Five machine learning models and an ensemble model (Stacked Generalization) were integrated into the system, supported by a knowledge base containing the meteorological observed data, pollutant concentrations, pollutant emissions, and model reanalysis data. Then five-year data (2015–2019) of Beijing, Shanghai, Guangzhou, Chengdu, Xi'an, Wuhan, and Changchun in China, were used as an application case to study the effectiveness of the automated forecasting system. Based on the analysis of seven evaluation criteria and pollution level forecasts, combined with the forecasting results for the next 3-days, it is found that the automated system can achieve satisfactory forecasting performance, better than most of numerical model results. This implied that the developed system unveils a good application prospect in the field of environmental meteorology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call