Abstract
A shipboard method for the determination of trace dissolved manganese in estuarine and coastal waters was developed using a technique of reverse flow injection analysis, which adopted a 1-m liquid waveguide capillary cell and spectrophotometric detection of manganese derivation with 1-(2-pyridylazo)-2-naphthol (PAN). The design of dual-sample-carrier speeded up the sample throughput and eliminated the Schlieren effect. The salinity of estuarine and coastal waters caused a huge increase in the blank absorption value at the maximum absorption wavelength; therefore, a less sensitive detection wavelength was selected to achieve a low blank value while the method sensitivity was not significantly decreased. Method parameters were optimized. The salinity effect from estuarine and coastal waters was carefully investigated, and interference from iron was evaluated. The proposed method had high sensitivity with a detection limit of 3.0nmolL−1 and a wide linear range of 10–1500nmolL−1 for dissolved manganese in seawater (S=35). The analytical results of five water samples with different salinities obtained using the proposed method showed good agreement with those using a reference ICP-MS method. The sample throughput of the proposed method was 120h−1, which was capable of obtaining high spatial and temporal resolution data in shipboard analysis. The proposed method had the advantages of convenient application in estuarine and coastal waters with different salinities, low detection limit, as well as high sample throughput. The proposed method was successfully applied to a 24h on-line analysis and a shipboard underway analysis of dissolved manganese in the Jiulongjiang Estuary.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have