Abstract

Peripherally inserted central catheters (PICC-lines) used in neonatology are made of thermoplastic polyurethane (TPU) or silicone. These materials usually contain substances that may leach into drug vehicles or blood. In this extractables study, we determined the optimal extraction conditions using TPU films containing defined amounts of butylhydroxytoluene (BHT) and then applied them on unused and explanted PICC-lines. Maceration and sonication tests were carried out with hexane, acetone and water as the extraction solvents. The analyses were performed using gas and liquid chromatography coupled with mass spectrometry detectors, as well as inductive coupled plasma optical emission spectroscopy to detect a wide range of extractables. We selected a limited list of substances to be sought from the usual adjuvants and monomers, related to their carcinogenic, mutagenic or reprotoxic properties and/or existence in endocrine disruptors lists. The TPU-film experiments showed that acetone was slightly better than hexane, and maceration better than sonication. When applied to PICC-lines, the extraction methods were almost similar but acetone was clearly better than hexane for TPU. From the 48 peaks initially observed in GC-MS, we ended up with 37 peaks to follow in TPU PICC-lines, among which were those of BHT and 4,4′-Methylenebis(cyclohexyl isocyanate) isomers. For silicone PICC-lines, out of 41 peaks initially observed in GC-MS, we followed 20 peaks, most of them being identified as cyclosiloxanes. Barium was the main inorganic element extracted for both PICC-lines. For TPU PICC-lines, the inter-batch variability was higher than for intra-batch, but in silicone devices both were similar. When compared to new PICC-lines, explanted TPU PICC-lines extracted peaks had a lower area under the curve (AUC), while the AUCs of the peaks were higher for the majority of silicone PICC-lines extract compounds. No identified substances were detected above their toxicological threshold, but isocyanates and cyclosiloxanes toxicity was mostly studied for other exposition routes than intravenous. The methods defined in this study were efficient in producing extractable profiles from both PICC-lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call