Abstract
Potential application of a metal oxide semiconductor based electronic nose (e-nose) as a non-destructive instrument for monitoring the change in volatile production of banana during the ripening process was studied. The proposed e-nose does not need any advanced or expensive laboratory equipment and proved to be reliable in recording meaningful differences between ripening stages. Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Soft Independent Modelling of Class Analogy (SIMCA) and Support Vector Machines (SVM) techniques were used for this purpose. Results showed that the proposed e-nose can distinguish between different ripening stages. The e-nose was able to detect a clear difference in the aroma fingerprint of banana when using SVM analysis compared with PCA and LDA, SIMCA analysis. Using SVM analysis, it was possible to differentiate and to classify the different banana ripening stages, and this method was able to classify 98.66% of the total samples in each respective group. Sensor array capabilities in the classification of ripening stages using loading analysis and SVM and SIMCA were also investigated, which leads to develop the application of a specific e-nose system by applying the most effective sensors or ignoring the redundant sensors.  
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.