Abstract
Two primary goals of a multi-objective evolutionary algorithm (MOEA) for solving multi-objective optimization problems are to find as many nondominated solutions as possible toward the true Pareto front and to maintain diversity of Pareto-optimal solutions along the tradeoff curves. However, few MOEAs can achieve these two goals concurrently. This study presents a new hybrid MOEA, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), in which the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions that arose from the evolving population of nondominated sorting genetic algorithm-II (NSGA-II). The NPTSGA coupled with a flow and transport model is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large field-scale groundwater remediation system for cleanup of large trichloroethylene plume at the Massachusetts Military Reservation in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface is incorporated into the NPTSGA to implement objective function evaluations in a distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world applications. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between the diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have