Abstract
Abstract An oceanic climatology to calculate upper-ocean thermal structure was developed for application year-round in the North Atlantic Ocean basin. The Systematically Merged Atlantic Regional Temperature and Salinity (SMARTS) Climatology is used in a two-layer model to project sea surface height anomalies (SSHA) into the water column at ¼° resolution. SMARTS blended monthly temperature and salinity fields from the World Ocean Atlas 2001 (WOA01) and Generalized Digital Environmental Model (GDEM) version 3.0 based on their performance compared to in situ measurements. Daily mean isotherm depths of 20°C (D20) and 26°C (D26) (and their mean ratio), reduced gravity, and mixed layer depth (MLD) were estimated from the climatology. This higher-resolution climatology resolves features in the Gulf of Mexico (GOM), including the Loop Current (LC) and eddy shedding region. Using SMARTS with satellite-derived SSHA and SST fields, daily values of isotherm depths, mixed layer depths, and ocean heat content (OHC) were calculated from 1998 to 2012. OHC is an important scalar when determining the ocean’s impact on tropical cyclone intensification, because it is a better predictor of SST cooling during hurricane passage. Airborne- and ship-deployed expendable bathythermographs (XBT), long-term moorings, and Argo profiling floats provided over 50 000 thermal profiles to assess satellite retrievals of isotherm depths and OHC using the SMARTS Climatology. The OHC calculation presented in this document reduces errors basinwide by 20%, with a 35% error reduction in the GOM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.