Abstract

The device performance of nanowire junctionless MOSFET (NW-JL-MOSFET) with InGaAs as core material in the sub-10 nm regime is examined by a device simulator, namely ATLAS. The focus is on gate-all-around nanowires with InGaAs core. These devices are further examined by adding gate-stack (high-k dielectric + oxide) method. It is observed that optimal selection of structure parameters of InGaAs NW-JL-MOSFET attains higher drain current and optimal performance. This proposed architecture also provides better switching speed of the structure. The gate dielectric material optimization of the structure is attained via broad device simulation. In this manuscript, a literature is carried for the short channel effects like subthreshold swing, I <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on</inf> /I <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</inf> ratio, Threshold voltage and drain induced barrier lowering (DIBL). The InGaAs device has a better threshold voltage and I <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on</inf> /I <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</inf> ratio, according to simulation data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.