Abstract

A Compliant XY micropositioning stage is purported for situating a material sample in nanoindentation tester process. This paper aims to develop, analyze and optimize a XY compliant micropositioning stage. The working stroke of proposed XY stage is amplified by combining the four-lever and a bridge amplification mechanism. To enhance the performances of the stage, the main geometric parameters are optimized by an integration method of Taguchi method, response surface method (RSM) and genetic algorithm (GA). Firstly, static analysis and dynamic analysis are conducted by the finite element analysis in order to predict initial performances of the XY stage. Secondly, the number of experiments and the data are retrieved by combination of the finite element analysis-integrated Taguchi method. Thirdly, the effects of main design variables on the output response sensitivity are considered. Later on, mathematical model for the amplification ratio was established by the RSM. Finally, based on the mathematical equation, the GA is adopted to define the optimal design variables. The results of numerical validations are in a good agreement with the predicted results. The results depicted that the proposed hybrid approach ensures a high reliability for engineering optimization problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call