Abstract
Voriconazole is an antifungal drug, which is classified under Bio-Classification System-II and has low water solubility (0.71 mg/mL) and high permeability. Hardly any endeavors have been made to increase the bioavailability of voriconazole. To develop and evaluate a solid SMEDDS (self-microemulsifying drug delivery system) for antifungal activity. Based on solubility studies of Labrafil-M 1994 CS (oil), Cremophor-RH 40 (a surfactant) and Transcutol-HP (a co-surfactant) were selected as components of the SMEDDS and a pseudo-ternary phase diagram was prepared. Thereafter, the oil, surfactant, and co-surfactant were mixed with altered weight ratios (1:1/1:2/2:1) and evaluated through various in vitro, in vivo analyses. The particle size of the optimized formulation was observed to be 19.04 nm and the polydispersity index (PDI) value was found to be 0.162 with steady-state zeta potential. The optimized liquid SMEDDS was converted into a solid SMEDDS. Various adsorbents, such as Aerosil-200, Avicel-PH101, Neusilin-US2, and Neusilin UFL2 were screened to better detect the oil-absorbing capacity and flow properties of the powder. Neusilin UFL2 was selected as an adsorbent due to its better oil-absorbing capacity. DSC, X-ray diffraction, and dissolution studies were carried out to characterize the formulation. Further, the Pharmacokinetic profile was also studied in Wistar rats and the Cmax, tmax, and AUC0→t were calculated. The Cmax and AUC0→t plasma concentration is considerably better for the SMEDDS than for the pure drug and marketed formulation. This investigation clearly reveals the potential of developing a solid SMEDDS for candidiasis and invasive aspergillosis treatment, with better efficacy as compared to the commercially available marketed formulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have