Abstract

Social media plays vital role among the user communities for social gathering, entertainment, communication, sharing knowledge so on. Twitter is one such network to connect millions of users to share information. Nowadays, there are humpteen numbers of users using social media for social engagements. Due to the fact that wide publicity of individuals and products get viral in social media, everyone wish to use social media as a platform to promote their product. Furthermore, large number of people relies on social media contents to take decisions. Twitter is one of the social media platforms to post the media contents by the user. Spammers are illegal users intrude the twitter account and send the duplicate messages to promote advertisement, phishing, scam and personal blogs etc. In this paper, a novel spam detection mechanism is introduced to detect the suspicious users on twitter. The system has been designed such a way that it initially set with semi-supervised at the tweet level and update into supervised level for learning the input tweets to detect the spammers. The proposed system will also identify the type of spammers and will also remove duplicate tweets. We have applied with multi-classifier algorithms like naïve Bayesian, K-Nearest neighbor and Random forest into twitter data set and the performance is compared. The experimental result shows very promising results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.