Abstract
A series of novel near-infrared (NIR) xanthene-chalcone fluorophores were constructed through a modular synthesis with the electron-donating xanthene moiety and the electron-withdrawing chalcone moiety. These fluorophores are convenient for fluorescence imaging in living cells, benefiting from their NIR emissions (650-710 nm), large Stokes shifts (>100 nm), moderate quantum yields and low cytotoxicity. The substituted hydroxyl group of the xanthene-chalcone fluorophore HCA-E facilitates the development of multifunctional fluorescent probes. As an example, a highly sensitive and selective probe N-HCA-E for glutathione (GSH) detection was developed based on the fluorophore HCA-E. A 4-nitrobenzenesulfonyl (4-Ns) group was introduced to cage the hydroxyl group of HCA-E, which was used as a selective recognition site for the thiol of GSH and an effective fluorescence quencher. Probe N-HCA-E revealed NIR "turn-on" fluorescence (709 nm) for endogenous and exogenous GSH detection in lysosomes with a large Stokes shift (129 nm) and high anti-interference ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.