Abstract

Traditionally, the process capability index is developed assuming that the process output data are independent and follow normal distribution. However, in most environmental cases, the process data have more than one quality characteristic and exhibit property of autocorrelation. We propose two novel multivariate process capability indices for autocorrelated data, NMACp and NMACpm, for the nominal-the-best case. For the smaller-the-better case, Γ(0) is used to modify the ND index and a new multivariate autocorrelated process capability index NMACpu is derived. Furthermore, a simulation study is conducted to compare the performance of the various multivariate autocorrelated indices. The simulation results show that the actual nonconforming rates can be correctly reflected by our proposed indices, which outperform the previous Cpm, MCp, MCpm, NMCp, NMCpm, and ND indices under different time series models. Thus, our proposed capability indices can be used in evaluating the performance of multivariate autocorrelated processes. Finally, a realistic example in hydrological application further demonstrates the usefulness of our proposed capability indices. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.