Abstract

In this paper, we consider the time-dependent Maxwell's equations when Cole-Cole dispersive medium is involved. The Cole-Cole model contains a fractional time derivative term, which couples with the standard Maxwell's equations in free space and creates some challenges in developing and analyzing time-domain finite element methods for solving this model as mentioned in our earlier work [J. Li, J. Sci. Comput., 47 (2001), pp. 1-26]. By adopting some techniques developed for the fractional diffusion equations [V.J. Ervin, N. Heuer, and J.P. Roop, SIAM J. Numer. Anal., 45 (2007), pp. 572-591], [Y. Lin and C. Xu, J. Comput. Phys., 225 (2007), pp. 1533-1552], [F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, Appl. Math. Comput., 191 (2007), pp. 12-20], we propose two fully discrete mixed finite element schemes for the Cole-Cole model. Numerical stability and optimal error estimates are proved for both schemes. The proposed algorithms are implemented and detailed numerical results are provided to justify our theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.