Abstract
In this study, the use of a popular deep reinforcement learning algorithm – deep Q-learning – in developing end-to-end control policies for robotic swarms is explored. Robots only have limited local sensory capabilities; however, in a swarm, they can accomplish collective tasks beyond the capability of a single robot. Compared with most automatic design approaches proposed so far, which belong to the field of evolutionary robotics, deep reinforcement learning techniques provide two advantages: (i) they enable researchers to develop control policies in an end-to-end fashion; and (ii) they require fewer computation resources, especially when the control policy to be developed has a large parameter space. The proposed approach is evaluated in a round-trip task, where the robots are required to travel between two destinations as much as possible. Simulation results show that the proposed approach can learn control policies directly from high-dimensional raw camera pixel inputs for robotic swarms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have