Abstract

The significant amount of secondary materials stocked in products, buildings, and infrastructures has directed increasing attention to urban mining and circular economy. Circular economy strategies and activities in the construction industry are, however, often hindered by a lack of detailed knowledge on the type, amount, and distribution of secondary materials in the urban built environment. In this study, we developed such an urban resource cadaster through an integration of the geo-localized, bottom-up material stock analysis with primary data on building material intensity coefficients for a case of Odense, the third largest city in Denmark that is undergoing major construction works. We quantified the total amount and spatial (including vertical) distribution of 46 construction materials stocked in buildings (residential and nonresidential), roads, and pipe networks (wastewater, water supply, and natural gas). In total, 66.7 megatons (or 329 tons per capita) of construction materials are stocked in Odense, in which aboveground stock only makes up for a third of the weight but hosts a wide variety of materials. This urban resource cadaster at high resolution can inform a variety of stakeholders along the value chain of the construction industry to better plan for construction materials and component recovery and smart waste management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.