Abstract
Advanced hybrid materials with unique properties are essential for addressing the demands of increasingly complex applications. Despite their importance, the self-assembly of layered double hydroxides (LDH) with metallic oxide nanoparticles and dicarboxylic acids is constrained by a limited understanding of the formation mechanisms and difficulties in evaluating their anticorrosive performance. In this study, we developed a novel anticorrosive system by intercalating CeNiLDH with a complex of vanadium pentoxide (V₂O₅) nanoparticles and (2E)‑but-2-enedioic acid ((2E)-BDA) on a MgO layer created through plasma-electrolysis of AZ31 Mg alloy. This system was compared with LDH films intercalated with either V₂O₅ or (2E)-BDA alone. The intercalation of LDH with V₂O₅ and (2E)-BDA resulted in a flower-like structure, while modification with their complex led to a more compact, cloud-like formation. These cloud-like structures, driven by enhanced absorption and robust hydrogen bonding throughout the hierarchical network, effectively suppress corrosion by delaying the movement of corrosive anions. This was reflected in a polarization resistance of 1.51 × 10¹⁰ Ω·cm², which is approximately two orders of magnitude times higher than the resistance of the unmodified LDH film (3.41 × 10⁸ Ω·cm²). Additionally, the corrosion current density (icorr) of the VOBDA sample showed a decrease by four orders of magnitude compared to the unmodified LDH sample, emphasizing the superior anticorrosive performance of this hybrid coating. Density functional theory (DFT) was used to elucidate the bonding and formation mechanisms between LDH and the inorganic-organic complex.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.