Abstract
In this work, we present a chip-integrated amperometric sensor targeted at the detection of hydrogen peroxide (H₂O₂) in the gaseous phase. Electrode chips are manufactured in a series of microfabrication steps and characterized electrochemically. Using such devices detection of H₂O₂ in an aqueous phase is shown by means of cyclic voltammetry and amperometry. Furthermore, it is discussed that variation of conditions such as the composition of the supporting electrolyte largely influences the obtained electrochemical signal. Additionally, electrochemical pretreatment of platinum working electrodes aiming at surface oxidation improves the limit of detection of the sensor and the linearity of the calibration curve at low H₂O₂ concentrations (<10 μM). Agarose-coated electrode chips are used for the measurement of H₂O₂ in the gaseous phase. Detection of H₂O₂ is shown in a static and in a flow-through setup. We find a limit of detection of approximately 42 ppb. Current work focuses on expanding the presented device to detection of H₂O₂ in exhaled breath condensate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.