Abstract
Abstract We present a new global oxygen atlas. This atlas uses all of the available full water column profiles of oxygen, salinity, and temperature available as part of the World Ocean Database released in 2018. Instead of optimal interpolation, we use the Data Interpolating Variational Analysis (DIVA) approach to map the available profiles onto 108 depth levels between the surface and 6800 m, covering more than 99% of ocean volume. This 1/2° × 1/2° atlas covers the period 1955–2018 in 1-yr intervals. The DIVA method has significant benefits over traditional optimal interpolation. It allows the explicit inclusion of advection and boundary constraints, thus offering improvements in the representations of oxygen, salinity, and temperature in regions of strong flow and near coastal boundaries. We demonstrate these benefits of this mapping approach with some examples from this atlas. We can explore the regional and temporal variations of oxygen in the global oceans. Preliminary analyses confirm earlier analyses that the oxygen minimum zone in the eastern Pacific Ocean has expanded and intensified. Oxygen inventory changes between 1970 and 2010 are assessed and compared against prior studies. We find that the full ocean oxygen inventory decreased by 0.84% ± 0.42%. For this period, temperature-driven solubility changes explain about 21% of the oxygen decline over the full water column; in the upper 100 m, solubility changes can explain all of the oxygen decrease; for the 100–600 m depth range, it can explain only 29%, 19% between 600 and 1000 m, and just 11% in the deep ocean. Significance Statement The purpose of this study is to create a new oxygen atlas of the world’s oceans using a technique that better represents the effects of ocean currents and topographic boundaries, and to investigate how oxygen in the ocean has changed over recent decades. We find the total quantity of oxygen in the world’s oceans has decreased by 0.84% since 1970, similar to previous studies. We also examine how much of this change can be explained by changes in water temperature; we find that this can explain all the changes in the upper 100 m but only 21% of the oxygen decline over the whole water column.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.