Abstract
The clinical application of human platelet lysate (HPL) holds promise for tissue regeneration, and the development of an efficient vehicle for its delivery is desired. Chitosan-based hydrogels are potential candidates, but they often exhibit weak mechanical properties. In this study, a chitosan/gelatin (CS-GE) hydrogel crosslinked by glyoxal was fabricated for sustained release of HPL. The influence of HPL on Hs68 fibroblast and human umbilical vein endothelial cell (HUVEC) culture was evaluated, and we found that supplementing 5% HPL in the medium could significantly improve cell proliferation relative to supplementing 10% fetal bovine serum (FBS). Moreover, HPL accelerated the in vitro wound closure of Hs68 cells and facilitated the tube formation of HUVECs. Subsequently, we fabricated CS-GE hydrogels crosslinked with different concentrations of glyoxal, and the release pattern of FITC-dextrans (4, 40 and 500 kDa) from the hydrogels was assessed. After an ideal glyoxal concentration was determined, we further characterized the crosslinked CS-GE hydrogels encapsulated with different amounts of HPL. The HPL-incorporated hydrogel was shown to significantly promote the proliferation of Hs68 cells and the migration of HUVECs. Moreover, the release pattern of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB) from hydrogel was examined in vitro, demonstrating a sustained release profile of the growth factors. Finally, the chick chorioallantoic membrane assay revealed that HPL encapsulation in the hydrogel significantly stimulated angiogenesis in ovo. These results demonstrate the great potential of the crosslinked CS-GE hydrogel to serve as an effective delivery system for HPL to promote tissue regeneration.
Highlights
Abundant growth factors and cytokines are stored in platelet granules, and they can be naturally released by thrombin activation and clotting or artificially released by freeze/thaw-mediated platelet lysis, sonication or chemical treatment [1]
Human platelet lysate (HPL)-incorporated CS-GE hydrogel was successfully fabricated, and its mechanical property was improved by crosslinking with glyoxal
In line with the previous publications suggesting that HPL is more suitable than fetal bovine serum (FBS) as culture supplements [50,51], our results revealed that 5% HPL was significantly more effective than 10% FBS to promote Hs68 fibroblast proliferation and migration
Summary
Abundant growth factors and cytokines are stored in platelet granules, and they can be naturally released by thrombin activation and clotting or artificially released by freeze/thaw-mediated platelet lysis, sonication or chemical treatment [1]. HPL is known to contain abundant mitogenic growth factors, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), platelet-derived growth factors (PDGF) and transforming growth factor (TGF) [7,8]. These growth factors exert a positive effect on angiogenesis and post-ischemic vascular remodeling and play a critical role in tissue inflammation and regeneration [9,10,11]. The effect of HPL on directly promoting angiogenesis and tissue regeneration has been demonstrated [15,16], so HPL holds great promise for treating various tissue defects
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.