Abstract

Sampling campaign design is a crucial aspect of air pollution exposure studies. Selection of both monitor numbers and locations is important for maximizing measured information, while minimizing bias and costs. We developed a two-stage geostatistical-based method using pilot NO2 samples from Lanzhou, China with the goal of improving sample design decision-making, including monitor numbers and spatial pattern. In the first step, we evaluate how additional monitors change prediction precision through minimized kriging variance. This was assessed in a Monte Carlo fashion by adding up to 50 new monitors to our existing sites with assigned concentrations based on conditionally simulated NO2 surfaces. After identifying a number of additional sample sites, a second step evaluates their potential placement using a similar Monte Carlo scheme. Evaluations are based on prediction precision and accuracy. Costs are also considered in the analysis. It was determined that adding 28-locations to the existing Lanzhou NO2 sampling campaign captured 73.5% of the total kriged variance improvement and resulted in predictions that were on average within 10.9 μg/m3 of measured values, while using 56% of the potential budget. Additional monitor sites improved kriging variance in a nonlinear fashion. This method development allows for informed sampling design by quantifying prediction improvement (accuracy and precision) against the costs of monitor deployment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call